Nuclear energy is playing a vital role in the life of every man, woman, and child in the United States today. In the years ahead it will affect increasingly all the peoples of the earth. It is essential that all Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them.

The United States Atomic Energy Commission provides this booklet to help you achieve such understanding.

Edward J. Brunenkant
Director
Division of Technical Information

This booklet is one of the "Understanding the Atom" Series. Comments are invited on this booklet and others in the series; please send them to the Division of Technical Information, U. S. Atomic Energy Commission, Washington, D. C. 20545.

Published as part of the AEC's educational assistance program, the series includes these titles:

Accelerators
Animals in Atomic Research
Atomic Fuel
Atomic Power Safety
Atoms at the Science Fair
Atoms in Agriculture
Atoms, Nature, and Man
Careers in Atomic Energy
Computers
Controlled Nuclear Fusion
Cryogenics, The Uncommon Cold
Direct Conversion of Energy
Fission From Nuclear Tests
Food Preservation by Irradiation
Genetic Effects of Radiation
Index to the AAS Series
Lasers
Microstructure of Matter
Neutron Activation Analysis
Nondestructive Testing
Nuclear Clocks
Nuclear Energy for Desalting
Nuclear Power and Merchant Shipping
Nuclear Power Plants

Nuclear Propulsion for Space
Nuclear Reactors
Nuclear Terms, A Brief Glossary
Our Atomic World
Plowshare
Plutonium
Power from Radioisotopes
Power Reactors in Small Packages
Radioactive Wastes
Radioisotopes and Life Processes
Radioisotopes in Industry
Radioisotopes in Medicine
Rare Earths
Reading Resources in Atomic Energy
Research Reactors
SNAP, Nuclear Space Reactors
Sources of Nuclear Fuel
Space Radiation
Synthetic Transuranium Elements
The Atom and the Ocean
The Chemistry of the Noble Gases
The First Reactor
Whole Body Counters
Your Body and Radiation

A single copy of any one booklet, or of no more than three different booklets, may be obtained free by writing to:

USAEC, P. O. BOX 62, OAK RIDGE, TENNESSEE 37830

Complete sets of the series are available to school and public librarians, and to teachers who can make them available for reference or for use by groups. Requests should be made on school or library letterheads and indicate the proposed use.

Students and teachers who need other material on specific aspects of nuclear science, or references to other reading material, may also write to the Oak Ridge address. Requests should state the topic of interest exactly, and the use intended.

In all requests, include "Zip Code" in return address.

Printed in the United States of America

USAEC Division of Technical Information Extension, Oak Ridge, Tennessee

March 1969
Articles

Reports

Motion Pictures
Available for loan without charge from the AEC Headquarters Film Library, Division of Public Information, U. S. Atomic Energy Commission, Washington, D. C. 20545, and from other AEC film libraries.
Nuclear Power for Space—SNAP-9A, 12 minutes, sound, color, 1963. Produced by the Martin Company. Explains the principles of power generation by isotopic decay, compares the isotopes plutonium-238 and curium-242, which are used in SNAP power systems, and discusses the design and safety features of the SNAP-9A.

SNAP NUCLEAR SPACE REACTORS

Contents
3 PUTTING THE ATOM IN ORBIT
5 It All Started with Feedback
7 Start of the U. S. Space Effort
9 SNAP in Space
10 What Makes a Good Space Power Plant?
11 A Look at the Competition
15 What Does “Ambitious” Mean?
16 HOW A REACTOR SPACE POWER PLANT WORKS
16 Fitting the Pieces Together
17 Megawatts from a Wastebasket
24 Conversion of Heat to Electricity
29 Getting Rid of Waste Heat
33 Shielding Men and Equipment
35 Nuclear Safety
38 IMPROVING THE BREED
38 Boiling Liquid Metals
39 Boiling Electrons
41 Brayton Versus Rankine
43 Other Ideas
45 SUGGESTED REFERENCES

Library of Congress Catalog Card Number 66-62772
THE COVER

The cover is an artist's conception of the SNAP-10A space power system, which was launched on April 3, 1965. This was the world's first operation of a nuclear reactor in space. The reactor is the assembly at the right end of the space vehicle.

THE AUTHOR

William R. Corliss is an atomic energy consultant and writer with 12 years of industrial experience including service as Director of Advanced Programs for the Martin Company's Nuclear Division. Prior industrial connections were with the Flight Propulsion Laboratory of the General Electric Company and with Prat & Whitney Aircraft Company. Mr. Corliss has B.S. and M.S. degrees in Physics from Rensselaer Polytechnic Institute and the University of Colorado, respectively. He has taught at those two institutions and at the University of Wisconsin. He is the author of Propulsion Systems for Space Flight (McGraw-Hill 1960), Space Probes and Planetary Exploration (Van Nostrand 1965), and co-author of Radioisotopic Power Generation (Prentice-Hall 1964), as well as numerous articles and papers for technical journals and conferences. In this series he has written Neutron Activation Analysis, Power Reactors in Small Packages, Direct Conversion of Energy, Computers, and was co-author of Power from Radioisotopes.

SUGGESTED REFERENCES

Books

POPULAR LEVEL

TECHNICAL LEVEL

worse because moderating power is lessened. Power-plant lifetime is limited because of this loss of hydrogen moderator.

A second plan attempts to interpose a thermoelectric heat exchanger between a SNAP-10A type reactor and the radiator. The thermoelectric elements are placed within this heat exchanger instead of in the radiator, as in SNAP-10A. A second, nonradioactive coolant carries the waste heat from the heat exchanger to the radiator. The additional weight of the heat exchanger should be more than offset by the reduction in shield weight made possible by the elimination of radioactive NaK from the radiator.

No one can now predict just what kind of nuclear power plant will be used on the first lunar base or on the first manned trip to Mars. But there is little doubt that the key to manned exploration of the solar system is the successful utilization of the energy locked within the uranium nucleus.

Some day, perhaps 15 years hence, a rocket will thrust a manned spacecraft from its parking orbit around the earth and inject it into an elliptical transfer orbit intended to intercept the planet Mars 7 months later. The men in this interplanetary craft will require electrical power for several purposes, for, according to an old rule of thumb, a man can live for only 40 days without food, 4 days without water, and 4 minutes without air. Enough food can and will be carried along on that first Mars journey, but there will not be room enough in the adventurous craft for all the water and air that will be required, unless it is possible for small amounts of these vital fluids to be used over and over again. The purification and regeneration of water and air will require electricity. So will the craft’s instruments and radios. Still more power will be needed to keep the cabin at a livable temperature.

For some long space voyages requiring large power supplies, chemical forms of energy—rocket fuels, battery fluids, and hydrogen—do not have enough energy per unit mass (joules per kilogram or kilowatt-hours per pound); they weigh too much for long-life space missions (although they are best for missions involving less power or shorter duration). Similarly, solar power has limitations for some missions. The sun’s contribution of energy, which is 1400 watts of power per square meter, or 150 watts per square foot, on the earth’s surface, will steadily decrease as the
Over a period of time, the reactor neutron economy gets worse. Even after the SNAP fuel elements have burned up, neutrons escape from the SNAP fuel elements. If hydrogen escapes through fuel wall and collides with another, fast neutron, there is a small chance- SNAP-8, and SNAP-10A, hydrogen can be used in SNAP-8, a hydrogen-diffusion barrier to place around the reactor.

The conclusion from the early studies was that Brayton-cycle space power plants would have to be considerably heavier than Rankine-cycle plants. Recently there has been a strong upsurge of interest in the gas cycle because of its inherent simplicity and its success in aircraft engines. Inert gas systems can also achieve higher temperatures than gas systems, but their higher operating temperatures limit their use. A strong jump in the usefulness of inert gases in the gas cycle because of this is not yet possible as a result of the technical difficulties with inert gases in the SNAP fuel elements. As hydrogen escapes over a period of time, the reactor neutron economy gets worse. Even after the SNAP fuel elements have burned up, neutrons escape from the SNAP fuel elements. If hydrogen escapes through fuel wall and collides with another, fast neutron, there is a small chance-

Other Ideas

1. "10' reactor project.

Other ideas now under way aim at improving the reactor's performance by developing a number of new techniques.

3. Gas bearings, where a film of gas supports the rotating shaft, are not well developed.

2. A lot of power is needed to compress the low-pressure gas exiting from the radiator back to the pressure level needed at the reactor. The Rankine-cycle liquid-metal pump requires negligible power in comparison.
jet engines. The Rankine cycle, which is used in SNAP-8 (and in all steam engines), involves the alternate boiling and condensing of a two-phase fluid like water or mercury. The Brayton cycle, on the other hand, employs a one-phase (gaseous) fluid like neon or argon to drive the turbines. The diagram for this power plant (Figure 26) shows its conceptual simplicity: Heat the gas in a reactor, expand it through a turbine, cool it in a radiator, compress it, and send it back to the reactor. There is no change of phase from liquid to vapor and back again. There is also the well-developed jet-engine technology to draw upon. Furthermore, the use of an inert gas virtually eliminates the corrosion problem. But—there always is a “but”—two objections arise from a theory and a third from practical considerations:

1. A most important difficulty is the fact that turbine exhaust gases may be easy to cool with the radiator while they are still hot, but, as they progress through the radiator tubes and drop in temperature, there is a spacecraft swings outward toward Mars. Mars is about 1.5 times as far from the sun as the earth is, so the solar-energy density is reduced by a factor equal to the square of $1.5 \times 1.5 = 2.25$. Huge arrays of mirrors or solar cells would therefore be needed to capture enough solar energy for a spacecraft operating near Mars.

In a situation where large amounts of power are needed over long periods of time, the best source of electricity is a nuclear reactor, which uses energy contained in fissionable uranium. Uranium-235 (^{235}U) contains 100,000 times as much energy per unit mass as the best chemical fuels.

This booklet describes the principles of nuclear-reactor space power plants and shows how they will contribute to the exploration and use of space. It compares them with chemical fuels, solar cells, and systems using energy from radioisotopes.

PUTTING THE ATOM IN ORBIT

It All Started with Feedback

When the chaos of World War II subsided, it was apparent that two important technical developments had occurred. The Germans had developed a large rocket, the V-2. This accomplishment was to fulfill prophesies made years before by the American rocket experimenter, Robert Goddard, the German space pioneer, Hermann Oberth, and the farsighted Russian, Konstantin Ziolkovsky. The second development, the atomic bomb, introduced a new, extremely compact form of energy that might be used to propel spacecraft, operate equipment, and sustain men on board.

In the late 1940s many scientists and engineers mused about the possibilities of combining the rocket and the atom. Space travel, however, was still a dream, and, besides, nuclear power had not been harnessed even for terrestrial use. Other matters dominated the national interest. An exception to this situation, however, was found in Project Feedback, a cold-war study of military reconnaissance satellites, sponsored by the U. S. Air Force and carried out by the Rand Corporation at Santa Monica, California. During Project Feedback the first serious studies were made.
1. Converters and bathed in electrically conducting liquid metal.
2. Thermal contractions and expansions and irradiation damage during reactor operation may cause the tiny gaps between electrodes (0.02 cm) to close and electrically short-circuit the converter.
3. Some of the best thermionic-emitter materials are neutron poisons, which reduce the reactor effectiveness.
4. Common to all thermionic reactor power plants is the extremely high temperature needed to boil electrons off the emitter surface —1700°C (3092°F) and up. This temperature requires the use of structural materials with stringent and hard-to-come-by specifications.

Problems like these are being studied daily at government and industrial laboratories. The solutions to them are important because the combination of high temperatures and the integration of reactor core and converters promises to make thermionic space power plants simpler and perhaps lighter than comparable turbogenerator power plants.

Another thermionic approach is to place the thermionic converters in a separate heat exchanger or in the radiator itself. Problems 1 and 3 are reduced or eliminated by the idea. Reflection shows, however, that problem 4 is accentuated because the liquid-metal stream must now operate at the very high emitter temperatures rather than at the much lower collector temperatures. It is premature to make a final judgment of this method, because so much depends on the solution of practical problems and the attainment of high reliability.

Brayton Versus Rankine

Early in their studies of the various kinds of space power plants, engineers compared the now-dominant Rankine cycle with the Brayton, or gas-turbine, cycle,* which is used in

*The two cycles were named after the Scottish engineer, William J. M. Rankine, who also introduced the Rankine temperature scale, and George Brayton, a Philadelphia engineer, who suggested a gas-cycle engine in 1873. The Brayton cycle is also called Joule’s cycle in Europe.
Coolant inlet
Grid plate
Control drum

Coolant outlet

Figure 25 One concept of a thermionic “in-core” nuclear power plant. Inset shows an enlarged cross-section of the thermionic fuel element.

emitted from radio-tube cathodes or electric-bulb filaments. The “hot” electrons are then collected or “condensed” on a cooler collector electrode nearby. A voltage is thus established across the two electrodes, and, of course, the flow of electrons between them constitutes an electrical current. Heat energy is thus converted into electricity. Not all the heat is transformed; most of it is conducted or radiated (as heat) across the narrow gap between the electrodes. This waste heat has to be removed and radiated into empty space, as might be expected.

In principle, the simplest way to make a nuclear thermionic power plant would be to wrap the thermionic-converter emitter right around the reactor fuel element and remove the waste heat with a liquid metal that cools the collector. There are several technical problems encountered with this “in-core” approach:

1. It is difficult to get electrical power out of a core filled with hundreds of interconnected thermionic con-

of obtaining satellite power from fissioning uranium and from radioactive isotopes.

The relatively high power requirements—a few kilowatts (as much as the output of a small outboard motor)—for some proposed satellites led the U. S. Atomic Energy Commission (AEC) in 1951 to request a series of nuclear-power-plant studies from industry. These studies, completed in 1952, concluded that both fission and radioisotope power plants were technically feasible for use on satellites. At that time there were no rockets capable of launching a satellite, although the first intercontinental ballistic missiles were being developed. But the need for nuclear power in space had been recognized. Theoretical studies continued even though there was not yet any program of space exploration.

Start of the U. S. Space Effort

The official U. S. scientific space effort began in 1955 when President Eisenhower announced the Vanguard satellite program for the International Geophysical Year. The Vanguard satellites weighed but a few pounds and were powered by solar cells. Plans also were moving ahead for much larger satellites, however. Mainly to meet the needs of these devices, the AEC began the SNAP (Systems for Nuclear Auxiliary Power) program in 1955. The Martin Company was chosen to design SNAP-1, which would use the heat from the decaying radioisotope cerium-144 to generate 500 watts of electrical power. Simultaneously, Atomics International Division, North American Aviation, Inc., began the design of SNAP-2, a reactor-heated electrical power plant to produce 3 kw (kilowatts).*

Soon afterward, development of SNAP-8 was begun as a joint activity of the Atomic Energy Commission and the National Aeronautics and Space Administration. The SNAP-10, a 300-watt “fission battery”, was designed to include a conduction-cooled reactor with thermoelectric elements

*All odd-numbered SNAP power plants use radioisotopic fuel. Even-numbered SNAP power plants have nuclear fission reactors as a source of heat. For more information on the odd-numbered group, see the booklet Power from Radioisotopes in this series.
CHRONOLOGY OF SPACE AND NUCLEAR TECHNOLOGY

SPACE

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>Edward Hale proposes a navigational satellite.</td>
</tr>
<tr>
<td>1890</td>
<td>Konstantin Ziolkovsky publishes Exploration of Space with Reactive Equipment.</td>
</tr>
<tr>
<td>1910</td>
<td>Robert Goddard publishes A Method of Reaching Extreme Altitudes.</td>
</tr>
<tr>
<td>1920</td>
<td>Hermann Oberth writes Rocket to Outer Space.</td>
</tr>
<tr>
<td>1940</td>
<td>V-2 rocket developed by Wernher von Braun and associates.</td>
</tr>
<tr>
<td>1950</td>
<td>Project Feedback studies reconnaissance satellites.</td>
</tr>
<tr>
<td>1950</td>
<td>Project Vanguard started.</td>
</tr>
<tr>
<td>1960</td>
<td>Sputnik I orbited.</td>
</tr>
<tr>
<td>1960</td>
<td>Apollo lunar landing scheduled.</td>
</tr>
<tr>
<td>1970</td>
<td>Extended lunar exploration, orbital laboratories.</td>
</tr>
<tr>
<td>1980</td>
<td>Mars landing possible.</td>
</tr>
</tbody>
</table>

NUCLEAR

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1896</td>
<td>Henri Becquerel discovers radioactivity.</td>
</tr>
<tr>
<td>1910</td>
<td>Ernest Rutherford makes first controlled nuclear transmutation.</td>
</tr>
<tr>
<td>1930</td>
<td>James Chadwick discovers the neutron.</td>
</tr>
<tr>
<td>1940</td>
<td>Enrico Fermi builds first reactor.</td>
</tr>
<tr>
<td>1950</td>
<td>SNAP program initiated by AEC.</td>
</tr>
<tr>
<td>1950</td>
<td>Modified SNAP-3 orbited on Navy navigational satellite.</td>
</tr>
</tbody>
</table>

Boiling Electrons

When SNAP-10A was discussed on page 16, thermoelectric power conversion was described as a relatively inefficient technique. **Thermionic** conversion of heat to electricity, however, promises to overcome this limitation and may therefore replace rotating machinery with direct conversion of energy at high power levels.

The concept of thermionic conversion is this: When an electrode made of a metal like tungsten or molybdenum is heated to a temperature that is high enough, electrons are "boiled off" its surface, just as electrons are thermionically...
Nuclear safety in space operations is ensured first by an exhaustive search for things that might go wrong. Then the consequences of the accident are computed or determined by actual test. Finally, if the consequences warrant, the power-plant design is altered, or countermeasures are taken to reduce the danger to negligible proportions.

IMPROVING THE BREED

In many areas of technology, a machine is obsolete by the time it is finally put in use. Improvements follow close on the heels of the development of any piece of equipment, whether it is an airplane or a SNAP reactor power plant. Some SNAP improvements are described in the following section.

Boiling Liquid Metals

In the systems that were used in the SNAP-2 and SNAP-50 programs, and still are the basis for SNAP-8, the hot vapor driving the turbine is created in a heat exchanger that takes its heat from the nonboiling primary coolant. Why not completely eliminate the heat exchanger and boil the

![Diagram of a power plant with a boiling liquid metals system](image)

Figure 24 Schematic diagram of a power plant in which the liquid metal boils directly in the core. The intermediate heat exchanger and primary coolant pump of SNAP-2 and SNAP-8 are thereby eliminated.

mounted on its surface. Planning for a convection-cooled, SNAP-2 reactor, with a thermoelectric generator on a conical shell behind a radiation shield, began in 1961 to meet a 500-watt requirement of the Department of Defense. It was to be designated SNAP-10A. A more advanced system was labeled SNAP-50. To untangle all these arbitrary project numbers, see the SNAP Summary Table on pages 8 and 9, where the status and characteristics of the even-numbered SNAP systems are listed. More detail on each type and its operation will be given in later sections.

SNAP in Space

The first SNAP reactor power plant to be launched into space was a 500-watt SNAP-10A, which was placed in orbit from Vandenberg Air Force Base, California, on April 3, 1965. An Atlas-Agena launch vehicle injected the satellite carrying the reactor into a near-circular polar orbit with an altitude of about 1300 km (kilometers), or 800 miles, the initial period for each journey around the earth being 111.5 minutes. The satellite carried a small ion-propulsion unit and other secondary experiments that used some of the SNAP-10A power. Some of the remaining power was used for the satellite telemetry, and the surplus was "wasted" in a power absorber.

The reactor functioned successfully for 43 days. Then on May 16, during the satellite's 555th revolution, the ground station tracking the satellite failed to receive telemetry

![SNAP-10A in orbit](image)

Figure 4 (a) SNAP-10A in orbit. It functioned successfully. (See cover.) (b) This earthbound counterpart generated electricity continuously under simulated space conditions for more than a year.
SNAP REACTOR SUMMARY TABLE

<table>
<thead>
<tr>
<th></th>
<th>Electrical power level, kw</th>
<th>Mass, kg (lbs)</th>
<th>Specific mass, kg/kw (lb/kw)</th>
<th>Overall efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP-2</td>
<td>3</td>
<td>668 (1470)</td>
<td>223 (490)</td>
<td>5.4</td>
</tr>
<tr>
<td>SNAP-4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SNAP-6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SNAP-8</td>
<td>35</td>
<td>4460 (9800)</td>
<td>127 (270)</td>
<td>7.8</td>
</tr>
<tr>
<td>SNAP-10</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SNAP-10A</td>
<td>0.5</td>
<td>427 (960)</td>
<td>908 (2000)</td>
<td>1.6</td>
</tr>
<tr>
<td>Improved SNAP-2-8-10 Technology</td>
<td>0.5-150</td>
<td>—</td>
<td>At 0.5 kw, 690 (1500) At 150 kw, 91 (200)</td>
<td>9 (with CRU*) 3 (with theremo-electric)</td>
</tr>
<tr>
<td>SNAP-50</td>
<td>100-1000</td>
<td>At 300 kw, 2700 (6000) At 1000 kw, 9000 (20,000)</td>
<td>At 300 kw, 9 (20)</td>
<td>15</td>
</tr>
<tr>
<td>Thermionics and advanced concepts</td>
<td>100-1000</td>
<td>—</td>
<td>4.5 (10)</td>
<td>Various</td>
</tr>
</tbody>
</table>

*Combined Rotating Unit.

signals, and was unable to issue radio commands to the satellite. Signals again were received on the 574th circuit, and it was determined that the satellite telemetry system then was operating on its reserve battery power, and that the reactor power output was zero. Analysis of what had happened indicated that the most probable cause of the reactor shutdown was a sequence of failures of electrical components in the spacecraft, resulting in false commands being given the reactor to shut down. Meanwhile, in a parallel test, a twin of the orbiting reactor has successfully operated on the ground at Santa Susanna, Calif., without adjustment of controls, for more than a year.

impact of the nonradioactive reactor on one of the scattered, unpopulous islands along the range is unlikely, but, if it did occur, the reactor would just break up like any other piece of equipment. Since the reactor would not have been operated, the unused uranium fuel would not be dangerous.

Suppose, though, that the launch vehicle fails just short of orbital velocity and plunges back into the earth's atmosphere at speeds up to 8000 meters/sec (nearly 5 miles/sec). The friction between the unprotected reactor and the atmosphere would generate enough heat to burn up some or all of the reactor with its still-inert uranium fuel. There would be no nuclear hazard in this case.

Only after the spacecraft is confirmed in orbit will the order be given to rotate the neutron reflectors by remote (radio) control to start a chain reaction in the reactor. In other words, only in orbit would a SNAP reactor be operating.

As a nuclear core generates heat during its normal operating lifetime, the concentration of unstable, radioactive fission products keeps increasing. These fission products are safe enough in a long-lived orbit, but engineers cannot overlook the remote chance that a satellite, bearing a cargo of radioactivity, might reenter the atmosphere earlier than expected. Using mathematical analysis and experimental tests with simulated reactors reentering high above the Atlantic Ocean, engineers have learned how to promote burnup by ablation during reentry. Ablation would disperse the accumulated fission products harmlessly above 100,000 feet. Any radioactivity reaching the ground weeks, months, and even years later would be diluted to safe concentrations by high-altitude winds and would also be much weaker because of radioactive decay in the intervening time.
system. Several practical arrangements are made to meet these theoretical possibilities. Accidents during the transportation of the nuclear reactor to the launch pad will not endanger anyone because the nuclear fuel is shipped either in several small packages that cannot be made critical or in a reactor that has so much neutron-absorbing material placed in and around its core that no accident can create criticality.

Once the reactor is on the launch pad, attention shifts to the launch trajectory. A rocket failure could “abort” the mission and could cause the reactor, which still would be subcritical, to strike the earth anywhere along the 5000-mile launch range from Cape Kennedy, Florida, to Ascension Island, far out in the South Atlantic, assuming the launch was made on the Eastern Test Range. Accidental

The first radioisotope (odd-numbered) power plant had been launched successfully in June 1961, when the SNAP-3, a simple unit generating 2.7 watts from plutonium-238 (238Pu) fuel, was orbited on a Navy navigational satellite. The unit is still operating, and three more have been launched since.

SNAP program history, however, is more than the collected descriptions of the various power plants. More pointedly, it is the story of the exploration and conquest of difficult and challenging combinations of technologies. As we discuss how the heat from fissioning uranium can be turned into electricity in space and just what makes a su-
perior space power plant, it will become apparent why ef­
fort and money have been channeled into the following technical areas:
1. The construction of very small, lightweight nuclear
reactors.
2. The use of liquid-metal coolants to extract heat ef­
ciently from small reactors.
3. The development of thermoelectrics and the explora­
tion of thermionic power generation.
4. The building of miniature, high-speed turbines and
electrical generators.
5. The demonstration, through extensive testing, that nu­
clear power plants are safe to use in space.

What Makes a Good Space Power Plant?

Rockets, like aircraft, can carry only limited payloads
(passengers and instruments). It is always true that a good
space power plant is one that does not weigh very much,
but this observation considers only one aspect of a complex
problem. How much will the power plant cost? Is it safe to
use? And, perhaps most important of all, how long will it
run without repair or maintenance? We can focus our at­
tention on the evaluation of space power plants by listing
such desirable factors as these:

<table>
<thead>
<tr>
<th>Desirable factor</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low weight</td>
<td>The power plant's specific mass (mass per unit of power) should be as low as possible and much lower than that of a chemical or solar power source.</td>
</tr>
<tr>
<td>Low cost</td>
<td>The manufacturing and development costs of the power plant should be low to keep total expenditures within budgeted limits.</td>
</tr>
<tr>
<td>Reliability</td>
<td>The probability should be high that the power plant will run for the specified length of time (usually 1-year-plus), with little or no human attention, in the presence of meteoroids, high vacuum, and the other hazards of space.</td>
</tr>
<tr>
<td>Nuclear Safety</td>
<td>Under no predictable circumstances should the crew or the earth's populace be endangered by radioactivity.</td>
</tr>
<tr>
<td>Compatibility</td>
<td>Power-plant characteristics must not require unreasonable restrictions on spacecraft design or operation.</td>
</tr>
<tr>
<td>Availability</td>
<td>The power plant must be ready when the rocket and payload are ready for launching.</td>
</tr>
</tbody>
</table>

neutron from the fission process. Sodium-24 decays to
magnesium-24 (^{24}Mg), with a half-life of 15 hours, by emitting a negative beta particle (electron) and gamma rays. The nuclear equation is

$$^{23}\text{Na}_{11} + ^1\text{n}_0 \rightarrow ^{24}\text{Na}_{11} \rightarrow ^{24}\text{Mg}_{12} + ^0\text{\beta}_1^- + \text{gammas}$$

This coolant radioactivity could cause trouble if the ^{24}Na contained in the NaK is carried through or around the shield into a heat exchanger or radiator, since the heat exchanger or radiator would then become a source of radiation calling for further shielding, especially on manned spacecraft. One way to minimize this problem would be to use the isotope of potassium that does not become highly activated, ^{39}K, as the reactor coolant for manned systems, instead of NaK.

Nuclear Safety

The subject of nuclear safety is separate and distinct from reactor shielding. Nuclear-safety analysis anticipates accidents that might occur during the transportation, launch, and operation in space of a nuclear power plant, predicts the human hazards that might result, and devises ways to avoid them. Theoretically there are three types of potential accidents:

1. Accidental criticality and release of radioactivity in populated areas due to transportation mishaps before launch or badly aimed or malfunctioning rocket-launch vehicles.
2. The accidental widespread dispersal of large quantities of radioactivity during the reentry into the atmosphere and consumption by air friction* of a nuclear power plant.
3. Accidental exposure of persons to whole reactors or pieces of reactors that have been only partly burned up during reentry after power operation in space.

The fact that large rocket-launch vehicles theoretically may fall on any spot on earth forces nuclear-power-plant designers to take special pains to ensure built-in safety, regardless of any accidents that might befall the space

*This physical process is called "ablation".
spacecraft cargo; more than a ton of shielding may be needed to protect spacecraft crews from reactor radiation and also from the protons and electrons making up the earth’s Van Allen belts.

Where possible, space reactors are shadow shielded only; that is, shielding is placed only between the reactor and the object to be protected. (On earth, reactors must be shielded on all sides because of a scattering of radiation.) Since nuclear radiation in empty space travels in straight lines, men and equipment would be safe in the “shadow”—on the opposite side—of a single piece of shielding. Theoretically a great deal of weight can be saved in this manner. Neutrons, however, might be scattered (reflected) from the radiator (or any other protruding equipment) directly into the shadowed area (see Figure 21), so either the equipment doing the scattering must be shadow shielded or additional shielding must be placed around the sensitive payload.

Let’s consider one final shielding topic. NaK, the liquid-metal reactor coolant, is “activated” (made radioactive) by exposure to reactor neutrons in its repeated passage through the core. More specifically, the natural sodium-23 (23Na) in NaK is transmuted to 24Na by the absorption of a

All these factors, obviously, are coveted by power-plant engineers. The factors, however, are all interdependent, and often one can be improved most effectively only at the expense of the others. Weight, for example, can be significantly reduced by raising the operating temperatures of the power plant, but power-plant equipment might deteriorate more quickly at higher temperatures. At this point the engineer in charge may step in with “trade-offs” to ask, for example, “How much weight-saving must I trade for a month more of operational life?” Ideally, this delicate “balancing act” would result in a low-weight, low-cost, ultra-safe, highly reliable power plant that the spacecraft designer would be delighted to get. In a practical world, however, compromises usually have to be made somewhere by establishing priorities and accepted tolerances for each value. (Meanwhile, the “trade-off” approach also serves as a guide as the search is started for materials that will give the required weight and operational life.)

A Look at the Competition

In general, a spacecraft designer will be satisfied to get any power plant that meets his performance specifications, whether the fuel it burns is uranium-235 or kerosene. Nuclear power, however, is in spirited competition with solar and chemical power, and in this competition the “winner” will be the power plant that weighs least when other desirable factors are uniform for all systems.

A typical nuclear-reactor space power plant consists of three major parts: (1) a compact fission reactor that generates heat, (2) an energy converter that transforms some of the heat into electricity, and (3) a radiator that radiates away heat that cannot be used. There is also a heat-transfer fluid that conveys the heat from one part of the power plant to another. As distinguished from its competitors, the solar cell and the fuel cell, a SNAP power plant is a “heat engine”, whose operation is described by the laws of thermodynamics.

Except for several Navy navigational satellites that carry radioisotope power generators in addition to solar cells and batteries, and the reactor-powered SNAP-10A satellite, all the more than 200 unmanned satellites and probes launched
into space have used solar cells and batteries for power. The successful American manned spacecraft employ batteries and fuel cells. Just how do these competitors—these other types of power plants—work?

Let's consider the solar cell. When sunlight hits a solar cell, the absorption of the photons of energy causes separation of electrical charges in a silicon semiconductor, and power is produced.* Solar cells have no moving parts to wear out but are often damaged by radiation in the earth's Van Allen belts. In addition, as satellites carrying solar cells move toward the sun, the extra heat absorbed reduces the cell's efficiency. And, as a spacecraft moves away from the sun, the intensity of solar energy drops inversely as the

*For a fuller explanation see Direct Conversion of Energy, another booklet in this series.

Figure 5 Comparison of important space power plants. In (a) SNAP converts fission-produced heat to electricity. In (b) the solar cell converts energy of photons to electricity. In (c) the fuel cell converts chemical energy into electricity.

Figure 20 Artist's conception of a SNAP-50 power plant as it would appear in earth orbit.

Shielding Men and Equipment

The neutron—fission reaction yields many gamma rays and neutrons. In addition, the unstable fission-product atoms produced in the fission process emit more gamma rays. Sensitive equipment, such as transistors and other electronic devices, must be protected against these radiations. So must the men aboard a nuclear-powered spacecraft.

Since the intensity of radiation drops off as the square of the distance from the reactor, the reactor usually is isolated at one end of the spacecraft, as shown on many of the diagrams in this booklet. Besides the protection provided by distance, physical shields must often be added to further reduce the neutron and gamma-ray fluxes.* Very dense materials, like lead and tungsten, generally make the best gamma-ray shields, whereas hydrogen-containing (neutron-absorbing) substances, like lithium hydride (LiH) and water, make the best neutron shields. Man is the most sensitive

* Nuclear radiation is attenuated, or weakened, in an exponential fashion by shielding. That is, \(I = I_0 e^{-\mu t} \), where \(I \) = attenuated flux, \(I_0 \) = initial flux, \(\mu \) = absorption coefficient, \(t \) = shield thickness, and \(e \) = the base of natural logarithms.
ness! More experience is needed with full-scale equipment, however.

Far from being a simple, inert component, the power-plant radiator has turned out to be a difficult device to design as well as a major weight factor in the overall power plant.

Figure 19 The complete SNAP-10A power plant showing the reactor perched on top of the conical radiator-thermoelectric element assembly (also shown on the cover). A rocket launch shroud surrounded this power plant during the launch period, but was blown off with explosive bolts once the reactor was in orbit.
 tors may not be usable, either. A reactor system has to be of a certain minimum weight before it will produce any power at all; a low-power situation, where low weight is very important, will require solar cells or radioisotope power systems.

Finally, there is a "middle" power range in which solar, radioisotope, and reactor systems all may be useful, and will compete for preference. Figure 6 sums up the situation. Reactor power starts to become competitive on missions needing more than a few kilowatts, and lasting several months to a year or more, because of its weight advantage and its high energy output. The longer the mission and the higher the power level, the greater the degree of probable reactor advantage. And about the middle of the 1970s, some "ambitious" space exploration missions required in each valved section to command the valves to close automatically in the event of a puncture.

Early power-plant designers pondered another question: Will vapor condense in a radiator under zero gravity conditions? On the earth's surface, the force of gravity aids in condensation first by pulling the vapor atoms to the heat-transfer surfaces of the radiator, where they are condensed, and then by causing the liquid to run uniformly down the surfaces. This action brings about a stable vapor-liquid movement in the condenser. Under zero gravity, though, it was expected that unstable movement through the tubes might occur because of irregular flow of "slugs" of liquid. Radiator designers tapered the tubes to stabilize condensation as well as to assist in weight reduction. Experiments conducted on "zero-g" trajectory flights by Air Force planes and on suborbital missiles have indicated that stable condensation does take place in a state of weightless-

![Figure 6](image-url)
Figure 6 Areas of superiority for various space power plants. Generally, the higher the power level and the longer the mission, the greater the superiority of nuclear reactor power. Superiority on this chart means least weight.

![Figure 18](image-url)
Figure 18 Sketch showing qualitatively how increasing the temperature \(T_2\) decreases radiator area on one hand due to the Stefan-Boltzmann Law, but increases it on the other due to loss of cycle efficiency, as described by the Carnot efficiency equation. \(T_1\) is assumed to be constant.
increase also reduces the efficiency of the heat engine, assuming T_1 is kept fixed (but this is only the first power!). By using minimization techniques (from calculus), we can show that minimum radiator area occurs when $T_2 \approx \frac{3}{4} T_1$ and $e \approx 25\%$. Figure 18 shows this qualitatively.

By using minimization techniques (from calculus), we can show that minimum radiator area occurs when $T_2 \approx \frac{3}{4} T_1$ and $e \approx 25\%$. Figure 18 shows this qualitatively.

![Figure 18](image)

Figure 17 Relative areas required to radiate waste heat to empty space at different temperatures. Increasing the radiator temperature rapidly brings down area and weight. (Figures given are calculated for 1 kilowatt of heat and perfect emissivity.)

Even though weight is at a minimum, it is apparent from the power-plant photographs in this booklet that the radiator is still a bulky piece of equipment. The photos also show the favorite arrangement of power-plant components on a spacecraft, that is, the use of conical radiators, with the reactor isolated at the end farthest removed from the payload, so as to provide protection against nuclear radiation by distance.

Space radiators could also be split into several parallel sections so that, if a meteoroid should puncture any one of them, valves could be closed and the others would continue to operate. This stratagem would preclude the complete loss of coolant and hence of power, spacecraft, mission, and men. For effectiveness, leak detectors would be

less will be undertaken for which only reactor systems will satisfy the need for power.

What Does "Ambitious" Mean?

It is easy to generalize about the role of nuclear power as long as we use the adjective "ambitious". To be more precise, however, there are four categories of space missions where reactor power seems appropriate. Almost everyone will agree that they are all truly ambitious:

1. Large orbiting space laboratories carrying several scientists who will conduct long-term scientific and military research. Launchings could begin about 1972. (Solar cells are quite competitive for this purpose.)
2. Lunar exploration beginning after the Project Apollo lunar landing. These missions will involve scientific surveys of the lunar surface and probably the establishment of a permanent base in the late 1970s.
3. The scientific reconnaissance of the nearer planets, especially Mars, with large, unmanned, automatic landers, followed by manned landings, possibly in the 1980s.
4. Large, unmanned earth satellites for radio and television relay, weather prediction, and other military or peaceful missions. (Solar cells may compete here, too.)

Besides these forays, which will be relatively short on the astronomical distance scale, there are proposed long trips to the outer planets and nearer stars. Electrical-propulsion engines, consuming hundreds of kilowatts, will be necessary for exploration at and beyond the rim of the solar system, or very close to the sun.

One important feature of these anticipated missions will be that they involve keeping men alive and comfortable for long periods of time in an inhospitable environment. It takes a lot of power to sustain men—between 1 and 2 kw per person. It appears that manned missions that take longer than a few months will require nuclear power.

*See conceptual drawings of "ambitious" spacecraft on pages 22 and 23.
HOW A REACTOR SPACE POWER PLANT WORKS

Fitting the Pieces Together

All SNAP space power plants are heat engines; that is, they generate electricity from heat. Some do this directly without moving parts (SNAP-10A). Others first convert heat into rotary motion (dynamic conversion) and then into electricity by coupling a generator to the rotating shaft. Gasoline-fueled automobile engines and jet aircraft engines are also classified as heat engines. Solar cells and fuel cells are not.

Nature (rather unkindly) dictates that no transformation of heat into another form of energy can be 100% efficient. Science describes this situation in the Second Law of Thermodynamics. According to this law, a portion of each kilowatt of heat produced in a thermodynamic cycle becomes "waste heat". In a practical cycle this unproductive portion must be disposed of. In an automobile the waste heat—representing perhaps 80% of the energy in the gasoline—is carried to the radiator or ejected from the exhaust pipe.

Getting Rid of Waste Heat

In the early days of space power engineering, when concepts were less advanced, the radiator was given less attention than it is now. To be sure, everyone recognized that there was waste heat and that it had to be dissipated or the spacecraft would melt. It is now apparent, however, that the radiator will often be the most massive component in the entire power plant. It is heavy because of the large amount of radiator area needed. The Stefan-Boltzmann Law* enables us to calculate the heat radiated from a given area by this equation:

\[P_r = \sigma EA(T_2^4 - T_3^4) \]

where \(P_r \) = the power radiated, watts
\(\sigma \) = the Stefan-Boltzmann constant \((5.67 \times 10^{-8} \text{ watts/m}^2\cdot\text{°K}^4 \) or \(5.02 \times 10^{-16} \text{ watts/ft}^2\cdot\text{°R}^4 \))
\(E \) = the emissivity of the radiator surface
\(A \) = the radiator area, m^2 or ft^2
\(T_2 \) = the radiator temperature, in °K or °R
\(T_3 \) = the effective temperature of outer space, in °K or °R

Usually \(T_3 \) is almost zero, except in the vicinity of large, warm bodies, such as the sun and earth. At the SNAP-10A radiator temperature of 321°C (610°F), 5.8 m^2 (62.5 ft^2) of radiator area are needed to radiate away approximately 40 thermal kilowatts of waste heat. Not only is a large area needed but also the metal walls of the radiator have to be thick enough to withstand the puncturing effects of the high-speed micrometeoroids that pervade outer space. The best way to reduce radiator weight, as suggested by the Stefan-Boltzmann Law, therefore, is to increase the radiator temperature, \(T_2 \).

An instructive situation involving \(T_2 \) now comes to light. Since radiator area (and therefore weight) is proportional to \(1/T_2^4 \), a little increase of \(T_2 \) helps a lot (notice that 4th power!); but the Carnot equation (page 25) tells us that this

*Named for the Austrian physicists, Josef Stefan (1835–1893) and Ludwig Boltzmann (1844–1906).
per generated kilowatt than thermoelectric systems. We therefore find them at the upper end of the power spectrum. Look at Figure 6 again.

The small turbine-generator combination shown in Figure 16 is a triumph of craftsmanship. It rotates at tens of thousands of revolutions per minute and can survive the corrosive attack of mercury vapor for many months, or even years. Ever since the SNAP program began in 1957, companies like Thompson Ramo Wooldridge and Aerojet-General have been struggling with the problems of high-temperature degradation of materials, liquid-metal-lubricated bearings, and all the ills that befall high-speed rotating machinery, particularly machinery that must run 10,000 hours without the helping hand of man. Many ground tests, however, are suggesting that the miniature SNAP turbogenerators can meet the tough reliability specifications of space power plants.

Figure 16 Combined turbine-generator-pump-unit.

Megawatts from a Wastebasket

If you bring a few pounds of ^{235}U together very rapidly, you can create a nuclear explosion—an uncontrolled release of energy from fissioning ^{235}U. In any atomic power plant, the trick is to slow down the rate of energy release, or, in other words, control the reaction; then it is necessary to find a way to extract the tremendous quantities of heat that are generated.

Note this is a radiator for heat, not nuclear radiation.
The rate at which fission occurs in 235U or in any other fissionable isotope, depends upon how the reactor’s neutron “economy” is managed. Neutrons are the medium of exchange in a nuclear reactor economy. When a single 235U nucleus fissions spontaneously, two or more neutrons are released, in addition to a substantial amount of energy. Collectively, the two released neutrons can cause more than one additional fission in the surrounding uranium in less than one thousandth of a second. Each new fission can repeat the process. Therefore, if an average of only 1.2 secondary fissions occurred as a result of each initial fission, 1.2×10^{10}, or 10^{10}, fissions would (theoretically) occur in 1 second. The energy release would be immense. The essence of reactor control is: To keep the power level in a nuclear reactor steady, the neutrons released in each fission should go on to cause precisely one more fission. When this occurs, the reactor is self-sustaining or “critical”. The reactor power output may be raised or lowered by permitting slightly more or slightly less than one additional fission to occur until the desired power level is achieved. The “just critical” condition can then be reestablished by control-element adjustments.

Neutron economy, like dollar economy, is controlled by balancing income and outgo. Three things can happen to the primary loop, and mercury the secondary. (See Figure 15.) The mercury is boiled in the heat exchanger, and the resulting hot mercury vapor is piped to a turbine, where it strikes the turbine blades and makes them turn. The turbine shaft revolves, and this movement drives an attached electric generator. This arrangement, involving a turbine—generator combination is called a turbogenerator. The expanded, cooler vapor passes next into the condenser, where it condenses back to a liquid as more heat (the waste heat) is extracted from it. The liquid mercury flows through a pump and back to the heat exchanger—boiler to be heated again.

A turbogenerator is an efficient device. In large, earth-based commercial power plants, this arrangement takes 30% or more of the heat and energy of a fluid and converts it into electricity. Because the emphasis in space is on compromise, for area and weight, rather than efficiency, efficiencies are generally between 8% and 17% in dynamic space power plants, a level that is still considerably higher than that obtainable from thermoelectricity. At power levels over a few kilowatts, turbogenerator systems are lighter
heated at one end and cooled at the other, and production of electricity results.* The fabrication of lightweight, rugged, efficient arrays of hundreds of tiny cylinders of this rather brittle material has been a difficult engineering task, although the success of SNAP-10A shows it can be done. Because the weight of SiGe is relatively high and the efficiency low (less than 2% in SNAP-10A), thermoelectric conversion is expected to be used only at low power levels. The development of thermoelectric materials that can operate at temperatures close to 700°C (1300°F) is expected to extend the competitive power range of thermoelectrics to 10 or 20 kw.

For higher power levels, dynamic power conversion is thought to be better. In this concept the hot liquid metal from the reactor is directed into a heat exchanger, where its contained energy is transferred by conduction and convection to a second liquid-metal stream. The NaK occupies

*See Direct Conversion of Energy, another booklet in this series, for an explanation of the process.
A lump of pure 235U about the size of a baseball can be made critical, but can a practical power reactor be made this small? It cannot, if useful power is to be extracted. If a lump of fissioning uranium is to generate significant power, holes have to be made in it for the passage of a fluid that will take the heat away to the energy-conversion unit where electricity is produced: The “baseball” has to be bigger when coolant holes are provided. Moreover, the holes must be lined with a tough metal to protect the uranium fuel from corrosive attack by the heat-transfer fluid. A still larger core of uranium is needed because, in order to reduce the inventory of expensive 235U (approximately $5000/\text{lb}$), a neutron “moderator” must be added to slow the fast, fission-generated neutrons down to speeds at which they stimulate additional fissions. By the time the coolant holes, protective coatings, and moderator have been added, SNAP cores are the size of a small wastebasket.

Instead of starting with massive pieces of uranium fuel and drilling holes through them, a reactor designer makes fuel elements that are long, slender cylinders or plates of fuel and moderator (uranium–zirconium–hydride [U–Zr–H$_x$] in many SNAP reactors). The elements are clad with

$$e = \frac{T_1 - T_2}{T_1}$$

where $e =$ the Carnot efficiency (after the Frenchman, Sadi Carnot, who developed the formula for the ideal heat engine)

$T_1 =$ the temperature of the heat source, in °K or °R

$T_2 =$ the temperature of the heat sink (radiator), in °K or °R

SNAP-10A makes use of this equation in the simplest way. The hot liquid metal is pumped past thermoelectric couples that convert less than 2% of the heat into electric-

Figure 10 A typical fuel element for a SNAP hydride core reactor.

Figure 13 The SNAP-10A thermoelectric converter module. Heat brought in by hot NaK is partially converted to electricity in the thermoelectric elements. Waste heat is radiated to empty space.

*Degrees on the Kelvin scale (°K), that is, degrees on a scale in which zero is equal to -273.15° Centigrade, or on the Rankine scale (°R), in which zero is -459.69° Fahrenheit.
reflector elements. The cylindrical control drums are made of an effective neutron reflector, beryllium or beryllium oxide. Rotating the drums outward causes more neutrons to escape and reduces the reactor power level. (It should be noted that it is not always necessary to put moderator material into the reactor.)

All space reactors are termed "compact" to distinguish them from commercial power reactors, which are hundreds of times larger. Compactness, of course, reduces not only the weight of the reactor but also the weight of the radiation shield. The following factors make a nuclear reactor compact.

1. Almost pure ^{235}U is used for fuel rather than natural uranium, which is only 0.7% ^{235}U and 99% ^{238}U; this eliminates or greatly reduces the large amount of heavy ^{238}U in the core. In many earthbound reactors the proportion of ^{235}U to ^{238}U is much smaller.

2. Liquid-metal coolants (like mercury) are employed. Water, used in most commercial plants, is not as effective in removing heat and, because of its high vapor pressure, cannot be used at the high temperatures needed for SNAP systems.

3. Reactor control is usually accomplished by varying the effectiveness of the reflector rather than inserting strong neutron absorbers directly among the fuel elements, as in the case of most commercial reactors.

Conversion of Heat to Electricity

Given a fast stream of very hot liquid metal emerging from a SNAP core, how can we best turn its energy into electricity? Remember that we cannot possibly turn all of it into electricity because, according to the Second Law of Thermodynamics, 100% efficient heat engines are not possible. In fact, if the engine is too efficient, the conversion unit will extract too much heat from the coolant, and the coolant temperature will be lowered to the point where the waste heat will be difficult to radiate away in the radiator. We can use the equation for the efficiency of an ideal heat engine to guide our thinking:
"AMBITION USE OF SPACE REACTOR POWER

A large permanent space station constructed of segments brought up by separate rockets. Rendezvous maneuvers would bring the pieces together to form an integrated whole. The reactor is at the end of the spoke at lower right.

An advanced meteorological satellite in orbit over an earth hurricane. The reactor is at the very top with the conical radiator beneath it. The dumbbell shape helps stabilize the satellite.

A manned orbital vehicle for laboratory operations. SNAP-8 is shown at the far left. The re-entry capsule for the men is at right.

A lunar base, showing a buried nuclear power plant with wing-type radiators erected. The reactor also could be mounted on the surface and shielded.

An electric propelled interplanetary vehicle for unmanned exploration of the planets powered by a SNAP-50 power plant.

(All views on this page are artists' conceptions.)
reflector elements. The cylindrical control drums are made of an effective neutron reflector, beryllium or beryllium oxide. Rotating the drums outward causes more neutrons to escape and reduces the reactor power level. (It should be noted that it is not always necessary to put moderator material into the reactor.)

All space reactors are termed "compact" to distinguish them from commercial power reactors, which are hundreds of times larger. Compactness, of course, reduces not only the weight of the reactor but also the weight of the radiation shield. The following factors make a nuclear reactor compact.

1. Almost pure ^{235}U is used for fuel rather than natural uranium, which is only 0.7% ^{235}U and 99% ^{238}U; this eliminates or greatly reduces the large amount of heavy ^{238}U in the core. In many earthbound reactors the proportion of ^{235}U to ^{238}U is much smaller.

2. Liquid-metal coolants (like mercury) are employed. Water, used in most commercial plants, is not as effective in removing heat and, because of its high vapor pressure, cannot be used at the high temperatures needed for SNAP systems.

3. Reactor control is usually accomplished by varying the effectiveness of the reflector rather than inserting strong neutron absorbers directly among the fuel elements, as in the case of most commercial reactors.

Conversion of Heat to Electricity

Given a fast stream of very hot liquid metal emerging from a SNAP core, how can we best turn its energy into electricity? Remember that we cannot possibly turn all of it into electricity because, according to the Second Law of Thermodynamics, 100% efficient heat engines are not possible. In fact, if the engine is too efficient, the conversion unit will extract too much heat from the coolant, and the coolant temperature will be lowered to the point where the waste heat will be difficult to radiate away in the radiator. We can use the equation for the efficiency of an ideal heat engine to guide our thinking:

$$\eta = 1 - \frac{T_c}{T_h}$$

where η is the efficiency, T_c is the coolant temperature, and T_h is the hot temperature of the radiator.

Finally, a means for control is provided. On SNAP-2, SNAP-8, SNAP-10A, and SNAP-50, movable reflector pieces are mounted outside the reactor vessel, as shown in Figure 12. Control can be maintained by these cylindrical metal sheaths to protect the contents from the coolant and prevent dispersal of the radioactive by-products of fission. Fuel elements are then assembled to make the core, and room is left among them for the coolant to flow. Next, the core is housed in a strong metal container called a reactor vessel. The pumping of a good heat-transfer fluid, like molten lithium or a sodium-potassium alloy called NaK (pronounced "nack"), through this compact bundle of fuel elements transports many kilowatts of heat to the energy-conversion unit.
A lump of pure ^{235}U about the size of a baseball can be made critical, but can a practical power reactor be made this small? It cannot, if useful power is to be extracted. If a lump of fissioning uranium is to generate significant power, holes have to be made in it for the passage of a fluid that will take the heat away to the energy-conversion unit where electricity is produced: The "baseball" has to be bigger when coolant holes are provided. Moreover, the holes must be lined with a tough metal to protect the uranium fuel from corrosive attack by the heat-transfer fluid. A still larger core of uranium is needed because, in order to reduce the inventory of expensive ^{235}U (approximately $5000/\text{lb}$), a neutron "moderator" must be added to slow the fast, fission-generated neutrons down to speeds at which they stimulate additional fissions. By the time the coolant holes, protective coatings, and moderator have been added, SNAP cores are the size of a small wastebasket.

Instead of starting with massive pieces of uranium fuel and drilling holes through them, a reactor designer makes fuel elements that are long, slender cylinders or plates of fuel and moderator (uranium–zirconium–hydride [U–Zr–H$_x$] in many SNAP reactors). The elements are clad with

$$e = \frac{T_1 - T_2}{T_1}$$

where e = the Carnot efficiency (after the Frenchman, Sadi Carnot, who developed the formula for the ideal heat engine)

T_1 = the temperature of the heat source, in °K or °R*

T_2 = the temperature of the heat sink (radiator), in °K or °R

SNAP-10A makes use of this equation in the simplest way. The hot liquid metal is pumped past thermoelectric couples that convert less than 2% of the heat into electric-

Figure 13 The SNAP-10A thermoelectric converter module. Heat brought in by hot NaK is partially converted to electricity in the thermoelectric elements. Waste heat is radiated to empty space.

*Degrees on the Kelvin scale (°K), that is, degrees on a scale in which zero is equal to -273.15° Centigrade, or on the Rankine scale (°R), in which zero is -459.69° Fahrenheit.
heated at one end and cooled at the other, and production of electricity results.* The fabrication of lightweight, rugged, efficient arrays of hundreds of tiny cylinders of this rather brittle material has been a difficult engineering task, although the success of SNAP-10A shows it can be done. Because the weight of SiGe is relatively high and the efficiency low (less than 2% in SNAP-10A), thermoelectric conversion is expected to be used only at low power levels. The development of thermoelectric materials that can operate at temperatures close to 700°C (1300°F) is expected to extend the competitive power range of thermoelectrics to 10 or 20 kw.

For higher power levels, dynamic power conversion is thought to be better. In this concept the hot liquid metal from the reactor is directed into a heat exchanger, where its contained energy is transferred by conduction and convection to a second liquid-metal stream. The NaK occupies each fission-generated neutron: (1) It can go on to cause another fission and, in the process, release more than one new neutron (profit). (2) It can be absorbed in a nonfission reaction with atoms in the coolant, the structure, or even uranium itself* (loss). (3) It can bounce (scatter) off atoms in the reactor without being absorbed and ultimately escape from the fuel region altogether (loss).

In most small nuclear reactors, like SNAP-2 and SNAP-10A, the neutron population is controlled by varying the number of neutrons that are permitted to escape. The ura-

*See Direct Conversion of Energy, another booklet in this series, for an explanation of the process.

*All neutron reactions with uranium do not cause fission. Sometimes 235U can be converted to 236U with release of gamma radiation.
The rate at which fission occurs in 235U or in any other fissionable isotope, depends upon how the reactor's neutron "economy" is managed. Neutrons are the medium of exchange in a nuclear reactor economy. When a single 235U nucleus fissions spontaneously, two or more neutrons are released, in addition to a substantial amount of energy. Collectively, the two released neutrons can cause more than one additional fission in the surrounding uranium in less than one thousandth of a second. Each new fission can repeat the process. Therefore, if an average of only 1.2 secondary fissions occurred as a result of each initial fission, 1.2^{1000}, or 10^{33}, fissions would (theoretically) occur in 1 second. The energy release would be immense. The essence of reactor control is: To keep the power level in a nuclear reactor steady, the neutrons released in each fission should go on to cause precisely one more fission. When this occurs, the reactor is self-sustaining or "critical". The reactor power output may be raised or lowered by permitting slightly more or slightly less than one additional fission to occur until the desired power level is achieved. The "just critical" condition can then be reestablished by control-element adjustments.

Neutron economy, like dollar economy, is controlled by balancing income and outgo. Three things can happen to the primary loop, and mercury the secondary. (See Figure 15.) The mercury is boiled in the heat exchanger, and the resulting hot mercury vapor is piped to a turbine, where it strikes the turbine blades and makes them turn. The turbine shaft revolves, and this movement drives an attached electric generator. This arrangement, involving a turbine-generator combination is called a turbogenerator. The expanded, cooler vapor passes next into the condenser, where it condenses back to a liquid as more heat (the waste heat) is extracted from it. The liquid mercury flows through a pump and back to the heat exchanger-boiler to be heated again.

A turbogenerator is an efficient device. In large, earth-based commercial power plants, this arrangement takes 30% or more of the heat and energy of a fluid and converts it into electricity. Because the emphasis in space is on compromise, for area and weight, rather than efficiency, efficiencies are generally between 8% and 17% in dynamic space power plants, a level that is still considerably higher than that obtainable from thermoelectricity. At power levels over a few kilowatts, turbogenerator systems are lighter.
per generated kilowatt than thermoelectric systems. We therefore find them at the upper end of the power spectrum. Look at Figure 6 again.

The small turbine-generator combination shown in Figure 16 is a triumph of craftsmanship. It rotates at tens of thousands of revolutions per minute and can survive the corrosive attack of mercury vapor for many months, or even years. Ever since the SNAP program began in 1957, companies like Thompson Ramo Wooldridge and Aerojet-General have been struggling with the problems of high-temperature degradation of materials, liquid-metal-lubricated bearings, and all the ills that befall high-speed rotating machinery, particularly machinery that must run 10,000 hours without the helping hand of man. Many ground tests, however, are suggesting that the miniature SNAP turbogenerators can meet the tough reliability specifications of space power plants.

![Figure 16 Combined turbine-generator-pump-unit.](image)

to the air, and, of course, this heat produces no power. However, in space there is no air to cool radiators of the sort used in automobiles, and, because of weight requirements, we cannot afford to use heat engines that continually exhaust fluids. A “closed”, recirculating fluid cycle (see Figure 7), rather than an “open” cycle, is required in space. In space flights, then, the only way to get rid of waste heat is to radiate it to cold, empty space, just as the earth itself radiates away heat on a clear winter night. In a space reactor power plant a radiator* cools the hot fluid coming from the energy-conversion unit; the fluid then returns to the reactor for reheating by fissioning uranium and a repeat of the cycle.

Two other power-plant components are shown in Figure 7: Radiation shielding for the crew and instruments and a box labeled “power-conditioning unit”. This unit contains all the switches, electron tubes, and regulators needed to provide the craft payload—its passengers and instruments—with the correct voltages, currents, and degrees of electrical regulation.

Important as the shielding and power-conditioning components are, they are not intimately tied to the rest of the power plant by the loop of hot fluid as the radiator is. Still, there are subtle links connecting all five of the major components. Just as we would not design a space power plant independently of the spacecraft, so the five components are designed to interact among themselves. For example, a bigger reactor increases the need for more shielding weight. The more important of these relations are shown in Figure 8 on page 18.

Megawatts from a Wastebasket

If you bring a few pounds of 235U together very rapidly, you can create a nuclear explosion—an uncontrolled release of energy from fissioning 235U. In any atomic power plant, the trick is to slow down the rate of energy release, or, in other words, control the reaction; then it is necessary to find a way to extract the tremendous quantities of heat that are generated.

*Note this is a radiator for heat, not nuclear radiation.
HOW A REACTOR SPACE POWER PLANT WORKS

Fitting the Pieces Together

All SNAP space power plants are heat engines; that is, they generate electricity from heat. Some do this directly without moving parts (SNAP-10A). Others first convert heat into rotary motion (dynamic conversion) and then into electricity by coupling a generator to the rotating shaft. Gasoline-fueled automobile engines and jet aircraft engines are also classified as heat engines. Solar cells and fuel cells are not.

Nature (rather unkindly) dictates that no transformation of heat into another form of energy can be 100% efficient. Science describes this situation in the Second Law of Thermodynamics. According to this law, a portion of each kilowatt of heat produced in a thermodynamic cycle becomes "waste heat". In a practical cycle this unproductive portion must be disposed of. In an automobile the waste heat—representing perhaps 80% of the energy in the gasoline—is carried to the radiator or ejected from the exhaust pipe.

Getting Rid of Waste Heat

In the early days of space power engineering, when concepts were less advanced, the radiator was given less attention than it is now. To be sure, everyone recognized that there was waste heat and that it had to be dissipated or the spacecraft would melt. It is now apparent, however, that the radiator will often be the most massive component in the entire power plant. It is heavy because of the large amount of radiator area needed. The Stefan-Boltzmann Law* enables us to calculate the heat radiated from a given area by this equation:

\[P_r = \sigma E A (T_2^4 - T_3^4) \]

where \(P_r \) = the power radiated, watts
\(\sigma \) = the Stefan-Boltzmann constant \((5.67 \times 10^{-8}\) watts/m\(^2\)°K\(^4\) or \(5.02 \times 10^{-16}\) watts/ft\(^2\)°R\(^4\))
\(E \) = the emissivity of the radiator surface
\(A \) = the radiator area, m\(^2\) or ft\(^2\)
\(T_2 \) = the radiator temperature, in °K or °R
\(T_3 \) = the effective temperature of outer space, in °K or °R

Usually \(T_3 \) is almost zero, except in the vicinity of large, warm bodies, such as the sun and earth. At the SNAP-10A radiator temperature of 321°C (610°F), 5.8 m\(^2\) (62.5 ft\(^2\)) of radiator area are needed to radiate away approximately 40 thermal kilowatts of waste heat. Not only is a large area needed but also the metal walls of the radiator have to be thick enough to withstand the puncturing effects of the high-speed micrometeoroids that pervade outer space. The best way to reduce radiator weight, as suggested by the Stefan-Boltzmann Law, therefore, is to increase the radiator temperature, \(T_2 \).

An instructive situation involving \(T_2 \) now comes to light. Since radiator area (and therefore weight) is proportional to \(1/T_2^4 \), a little increase of \(T_2 \) helps a lot (notice that 4th power!); but the Carnot equation (page 25) tells us that this

*Named for the Austrian physicists, Josef Stefan (1835–1893) and Ludwig Boltzmann (1844–1906).
increase also reduces the efficiency of the heat engine, assuming T_1 is kept fixed (but this is only the first power!).

By using minimization techniques (from calculus), we can show that minimum radiator area occurs when $T_2 \approx \frac{3}{4} T_1$ and $e \approx 25\%$. Figure 18 shows this qualitatively.

Even though weight is at a minimum, it is apparent from the power-plant photographs in this booklet that the radiator is still a bulky piece of equipment. The photos also show the favorite arrangement of power-plant components on a spacecraft, that is, the use of conical radiators, with the reactor isolated at the end farthest removed from the payload, so as to provide protection against nuclear radiation by distance.

Space radiators could also be split into several parallel sections so that, if a meteoroid should puncture any one of them, valves could be closed and the others would continue to operate. This stratagem would preclude the complete loss of coolant and hence of power, spacecraft, mission, and men. For effectiveness, leak detectors would be

less will be undertaken for which only reactor systems will satisfy the need for power.

What Does “Ambitious” Mean?

It is easy to generalize about the role of nuclear power as long as we use the adjective “ambitious”.* To be more precise, however, there are four categories of space missions where reactor power seems appropriate. Almost everyone will agree that they are all truly ambitious:

1. Large orbiting space laboratories carrying several scientists who will conduct long-term scientific and military research. Launchings could begin about 1972. (Solar cells are quite competitive for this purpose.)

2. Lunar exploration beginning after the Project Apollo lunar landing. These missions will involve scientific surveys of the lunar surface and probably the establishment of a permanent base in the late 1970s.

3. The scientific reconnaissance of the nearer planets, especially Mars, with large, unmanned, automatic landers, followed by manned landings, possibly in the 1980s.

4. Large, unmanned earth satellites for radio and television relay, weather prediction, and other military or peaceful missions. (Solar cells may compete here, too.)

Besides these forays, which will be relatively short on the astronomical distance scale, there are proposed long trips to the outer planets and nearer stars. Electrical-propulsion engines, consuming hundreds of kilowatts, will be necessary for exploration at and beyond the rim of the solar system, or very close to the sun.

One important feature of these anticipated missions will be that they involve keeping men alive and comfortable for long periods of time in an inhospitable environment. It takes a lot of power to sustain men—between 1 and 2 kw per person. It appears that manned missions that take longer than a few months will require nuclear power.

*See conceptual drawings of “ambitious” spacecraft on pages 22 and 23.
tors may not be usable, either. A reactor system has to be of a certain minimum weight before it will produce any power at all; a low-power situation, where low weight is very important, will require solar cells or radioisotope power systems.

Finally, there is a "middle" power range in which solar, radioisotope, and reactor systems all may be useful, and will compete for preference. Figure 6 sums up the situation. Reactor power starts to become competitive on missions needing more than a few kilowatts, and lasting several months to a year or more, because of its weight advantage and its high energy output. The longer the mission and the higher the power level, the greater the degree of probable reactor advantage. And about the middle of the 1970s, some "ambitious" space exploration missions doubt-

Figure 6 Areas of superiority for various space power plants. Generally, the higher the power level and the longer the mission, the greater the superiority of nuclear reactor power. Superiority on this chart means least weight.

required in each valved section to command the valves to close automatically in the event of a puncture.

Early power-plant designers pondered another question: Will vapor condense in a radiator under zero gravity conditions? On the earth's surface, the force of gravity aids in condensation first by pulling the vapor atoms to the heat-transfer surfaces of the radiator, where they are condensed, and then by causing the liquid to run uniformly down the surfaces. This action brings about a stable vapor-liquid movement in the condenser. Under zero gravity, though, it was expected that unstable movement through the tubes might occur because of irregular flow of "slugs" of liquid. Radiator designers tapered the tubes to stabilize condensation as well as to assist in weight reduction. Experiments conducted on "zero-g" trajectory flights by Air Force planes and on suborbital missiles have indicated that stable condensation does take place in a state of weightless-
ness! More experience is needed with full-scale equipment, however.

Far from being a simple, inert component, the power-plant radiator has turned out to be a difficult device to design as well as a major weight factor in the overall power plant.

Figure 19 The complete SNAP-10A power plant showing the reactor perched on top of the conical radiator-thermoelectric element assembly (also shown on the cover). A rocket launch shroud surrounded this power plant during the launch period, but was blown off with explosive bolts once the reactor was in orbit.

square of the distance. Also, of course, during lunar and planetary nights and under opaque atmospheres, as on Venus, there is no sunlight at all. For many missions, however, solar cells are lighter than present radioisotope and reactor power systems.

Solar cells combined with batteries have satisfactorily powered most satellites so far, but, as power requirements rise higher and higher, larger and larger arrays of solar cells will be needed. This means the big assemblies of cells will have to be deployed, after the craft is in orbit, from their stowed positions within the launch vehicle. Deployment of the butterfly-like solar-cell arrays complicates operations and adds possible sources of failure. Solar cell arrays are, of course, being constantly improved.

Fuel cells are adequate when space missions continue for a month or so. Fuel cells generate electricity directly from the chemical combination of a fuel, like hydrogen, and an oxidizer; the hydrogen-oxygen reaction is $2H_2 + O_2 \rightarrow 2H_2O + \text{energy}$. The fuel cells are, in effect, chemical batteries supplied continuously with fuel. In contrast to solar cells, where the energy source is external and contributes no weight, and nuclear systems, where the weight of the fuel consumed is insignificant, fuel cells need a substantial supply of fluids. Every additional hour of planned operation means that more fuel and oxidizer weight must be aboard at launch time. For space trips of short duration, like the Apollo lunar-landing mission, however, fuel cells have been chosen because they are light and reliable.

Power also can be supplied by radioisotope generators, which convert the energy liberated by radioactive atoms to electricity. Radioisotope systems generally operate in the same power ranges and over the same time periods as solar cells, but have advantages over solar cells for satellite orbits passing through radiation belts, and in areas such as the moon, where long periods of darkness occur.

There are many missions in which nuclear systems have disadvantages. For example, missions requiring measurement of very low levels of natural space radiation usually will not be able to use a reactor system, because the relatively high radiation from the reactor would interfere with the measurements. For missions at very low power, reac-
into space have used solar cells and batteries for power. The successful American manned spacecraft employ batteries and fuel cells. Just how do these competitors—these other types of power plants—work?

Figure 5 Comparison of important space power plants. In (a) SNAP converts fission-produced heat to electricity. In (b) the solar cell converts energy of photons to electricity. In (c) the fuel cell converts chemical energy into electricity.

Let's consider the solar cell. When sunlight hits a solar cell, the absorption of the photons of energy causes separation of electrical charges in a silicon semiconductor, and power is produced.* Solar cells have no moving parts to wear out but are often damaged by radiation in the earth's Van Allen belts. In addition, as satellites carrying solar cells move toward the sun, the extra heat absorbed reduces the cell's efficiency. And, as a spacecraft moves away from the sun, the intensity of solar energy drops inversely as the

*For a fuller explanation see Direct Conversion of Energy, another booklet in this series.

Figure 20 Artist's conception of a SNAP-50 power plant as it would appear in earth orbit.

Shielding Men and Equipment

The neutron–fission reaction yields many gamma rays and neutrons. In addition, the unstable fission-product atoms produced in the fission process emit more gamma rays. Sensitive equipment, such as transistors and other electronic devices, must be protected against these radiations. So must the men aboard a nuclear-powered spacecraft.

Since the intensity of radiation drops off as the square of the distance from the reactor, the reactor usually is isolated at one end of the spacecraft, as shown on many of the diagrams in this booklet. Besides the protection provided by distance, physical shields must often be added to further reduce the neutron and gamma-ray fluxes.* Very dense materials, like lead and tungsten, generally make the best gamma-ray shields, whereas hydrogen-containing (neutron-absorbing) substances, like lithium hydride (LiH) and water, make the best neutron shields. Man is the most sensitive

* Nuclear radiation is attenuated, or weakened, in an exponential fashion by shielding. That is, \(I = I_0 e^{-\mu t} \), where \(I = \) attenuated flux, \(I_0 = \) initial flux, \(\mu = \) absorption coefficient, \(t = \) shield thickness, and \(e = \) the base of natural logarithms.
spacecraft cargo; more than a ton of shielding may be needed to protect spacecraft crews from reactor radiation and also from the protons and electrons making up the earth's Van Allen belts.

Where possible, space reactors are shadow shielded only; that is, shielding is placed only between the reactor and the object to be protected. (On earth, reactors must be shielded on all sides because of a scattering of radiation.) Since nuclear radiation in empty space travels in straight lines, men and equipment would be safe in the "shadow"—on the opposite side—of a single piece of shielding. Theoretically a great deal of weight can be saved in this manner. Neutrons, however, might be scattered (reflected) from the radiator (or any other protruding equipment) directly into the shadowed area (see Figure 21), so either the equipment doing the scattering must be shadow shielded or additional shielding must be placed around the sensitive payload.

Let's consider one final shielding topic. NaK, the liquid-metal reactor coolant, is "activated" (made radioactive) by exposure to reactor neutrons in its repeated passage through the core. More specifically, the natural sodium-23 (23Na) in NaK is transmuted to 24Na by the absorption of a

All these factors, obviously, are coveted by power-plant engineers. The factors, however, are all interdependent, and often one can be improved most effectively only at the expense of the others. Weight, for example, can be significantly reduced by raising the operating temperatures of the power plant, but power-plant equipment might deteriorate more quickly at higher temperatures. At this point the engineer in charge may step in with "trade-offs" to ask, for example, "How much weight-saving must I trade for a month more of operational life?" Ideally, this delicate "balancing act" would result in a low-weight, low-cost, ultra-safe, highly reliable power plant that the spacecraft designer would be delighted to get. In a practical world, however, compromises usually have to be made somewhere by establishing priorities and accepted tolerances for each value. (Meanwhile, the "trade-off" approach also serves as a guide as the search is started for materials that will give the required weight and operational life.)

Figure 21 Shielding problems. Ordinarily, radiation is sufficiently attenuated by a shadow shield. In Case A, however, reactor-produced neutrons may be scattered off an extended radiator or another piece of equipment outside the shadow cone. In Case B, radioactive NaK in the radiator creates a new radiation source on the other side of the shadow shield. Case C shows radiation absorption in the shield.

A Look at the Competition

In general, a spacecraft designer will be satisfied to get any power plant that meets his performance specifications, whether the fuel it burns is uranium-235 or kerosene. Nuclear power, however, is in spirited competition with solar and chemical power, and in this competition the "winner" will be the power plant that weighs least when other desirable factors are uniform for all systems.

A typical nuclear-reactor space power plant consists of three major parts: (1) a compact fission reactor that generates heat, (2) an energy converter that transforms some of the heat into electricity, and (3) a radiator that radiates away heat that cannot be used. There is also a heat-transfer fluid that conveys the heat from one part of the power plant to another. As distinguished from its competitors, the solar cell and the fuel cell, a SNAP power plant is a "heat engine", whose operation is described by the laws of thermodynamics.

Except for several Navy navigational satellites that carry radioisotope power generators in addition to solar cells and batteries, and the reactor-powered SNAP-10A satellite, all the more than 200 unmanned satellites and probes launched
perior space power plant, it will become apparent why ef­
fort and money have been channeled into the following technical areas:

1. The construction of very small, lightweight nuclear reactors.
2. The use of liquid-metal coolants to extract heat efficiently from small reactors.
3. The development of thermoelectrics and the exploration of thermionic power generation.
4. The building of miniature, high-speed turbines and electrical generators.
5. The demonstration, through extensive testing, that nuclear power plants are safe to use in space.

What Makes a Good Space Power Plant?

Rockets, like aircraft, can carry only limited payloads (passengers and instruments). It is always true that a good space power plant is one that does not weigh very much, but this observation considers only one aspect of a complex problem. How much will the power plant cost? Is it safe to use? And, perhaps most important of all, how long will it run without repair or maintenance? We can focus our attention on the evaluation of space power plants by listing such desirable factors as these:

<table>
<thead>
<tr>
<th>Desirable factor</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low weight</td>
<td>The power plant's specific mass (mass per unit of power) should be as low as possible and much lower than that of a chemical or solar power source.</td>
</tr>
<tr>
<td>Low cost</td>
<td>The manufacturing and development costs of the power plant should be low to keep total expenditures within budgeted limits.</td>
</tr>
<tr>
<td>Reliability</td>
<td>The probability should be high that the power plant will run for the specified length of time (usually 1-year-plus), with little or no human attention, in the presence of meteoroids, high vacuum, and the other hazards of space. Under no predictable circumstances should the crew or the earth's populace be endangered by radioactivity.</td>
</tr>
<tr>
<td>Nuclear Safety</td>
<td>Power-plant characteristics must not require unreasonable restrictions on spacecraft design or operation.</td>
</tr>
<tr>
<td>Compatibility</td>
<td>The power plant must be ready when the rocket and payload are ready for launching.</td>
</tr>
</tbody>
</table>

neutron from the fission process. Sodium-24 decays to magnesium-24 (^{24}\text{Mg}) with a half-life of 15 hours, by emitting a negative beta particle (electron) and gamma rays. The nuclear equation is

\[^{23}\text{Na} + {\text{n}_0} \rightarrow ^{24}\text{Na} \rightarrow ^{24}\text{Mg} + 0^7\text{Li} + \text{gammas} \]

This coolant radioactivity could cause trouble if the NaK contained in the NaK is carried through or around the shield into a heat exchanger or radiator, since the heat exchanger or radiator would then become a source of radiation calling for further shielding, especially on manned spacecraft. One way to minimize this problem would be to use the isotope of potassium that does not become highly activated, ^{39}\text{K}, as the reactor coolant for manned systems, instead of NaK.

Nuclear Safety

The subject of nuclear safety is separate and distinct from reactor shielding. Nuclear-safety analysis anticipates accidents that might occur during the transportation, launch, and operation in space of a nuclear power plant, predicts the human hazards that might result, and devises ways to avoid them. Theoretically there are three types of potential accidents:

1. Accidental criticality and release of radioactivity in populated areas due to transportation mishaps before launch or badly aimed or malfunctioning rocket-launch vehicles.
2. The accidental widespread dispersal of large quantities of radioactivity during the reentry into the atmosphere and consumption by air friction* of a nuclear power plant.
3. Accidental exposure of persons to whole reactors or pieces of reactors that have been only partly burned up during reentry after power operation in space.

The fact that large rocket-launch vehicles theoretically may fall on any spot on earth forces nuclear-power-plant designers to take special pains to ensure built-in safety, regardless of any accidents that might befall the space

*This physical process is called "ablation".
system. Several practical arrangements are made to meet these theoretical possibilities. Accidents during the transportation of the nuclear reactor to the launch pad will not endanger anyone because the nuclear fuel is shipped either in several small packages that cannot be made critical or in a reactor that has so much neutron-absorbing material placed in and around its core that no accident can create criticality.

Once the reactor is on the launch pad, attention shifts to the launch trajectory. A rocket failure could "abort" the mission and could cause the reactor, which still would be subcritical, to strike the earth anywhere along the 5000-mile launch range from Cape Kennedy, Florida, to Ascension Island, far out in the South Atlantic, assuming the launch was made on the Eastern Test Range. Accidental

The first radioisotope (odd-numbered) power plant had been launched successfully in June 1961, when the SNAP-3, a simple unit generating 2.7 watts from plutonium-238 (\(^{238}\text{Pu}\)) fuel, was orbited on a Navy navigational satellite. The unit is still operating, and three more have been launched since.

SNAP program history, however, is more than the collected descriptions of the various power plants. More pointedly, it is the story of the exploration and conquest of difficult and challenging combinations of technologies. As we discuss how the heat from fissioning uranium can be turned into electricity in space and just what makes a su-

<table>
<thead>
<tr>
<th>Date available</th>
<th>Core type</th>
<th>Core coolant</th>
<th>Conversion scheme</th>
<th>Status and possible applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>Hydride</td>
<td>NaK</td>
<td>Rankine-cycle turbogenerator</td>
<td>Discontinued space power plant</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Water</td>
<td>Rankine-cycle turbogenerator</td>
<td>Discontinued undersea power plant</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>NaK</td>
<td>Various</td>
<td>Completed series of undersea power-plant studies</td>
</tr>
<tr>
<td>—</td>
<td>Hydride</td>
<td>NaK</td>
<td>Rankine-cycle turbogenerator</td>
<td>Technology in development, Orbital labs, lunar base, communications satellites, deep-space missions</td>
</tr>
<tr>
<td>—</td>
<td>Hydride</td>
<td>None</td>
<td>Thermoelectric</td>
<td>Early design using conductive cooling of reactor; changed to SNAP-10A, a convective heat-transfer design</td>
</tr>
<tr>
<td>1965</td>
<td>Hydride</td>
<td>NaK</td>
<td>Thermoelectric</td>
<td>Completed; in orbit April 1965. Large satellites</td>
</tr>
<tr>
<td>1970s</td>
<td>Hydride</td>
<td>NaK</td>
<td>Turbogenerator or thermoelectric</td>
<td>Technology now being gained in SNAP Systems improvement programs</td>
</tr>
<tr>
<td>1975–1980</td>
<td>Fast, nitride</td>
<td>Li</td>
<td>Rankine-cycle turbogenerator</td>
<td>Technology under development. Orbital labs, lunar base, Mars missions, electrical propulsion</td>
</tr>
<tr>
<td>1980s</td>
<td>Various</td>
<td>Various</td>
<td>Various</td>
<td>Technology base now being laid in various advanced-concepts programs</td>
</tr>
</tbody>
</table>

The first radioisotope (odd-numbered) power plant had been launched successfully in June 1961, when the SNAP-3, a simple unit generating 2.7 watts from plutonium-238 (\(^{238}\text{Pu}\)) fuel, was orbited on a Navy navigational satellite. The unit is still operating, and three more have been launched since.

SNAP program history, however, is more than the collected descriptions of the various power plants. More pointedly, it is the story of the exploration and conquest of difficult and challenging combinations of technologies. As we discuss how the heat from fissioning uranium can be turned into electricity in space and just what makes a su-

Figure 22 Possible accidents and situations that nuclear safety engineers must anticipate to guarantee safety.
SNAP REACTOR SUMMARY TABLE

<table>
<thead>
<tr>
<th></th>
<th>Electrical power level, kw</th>
<th>Mass, kg (lbs)</th>
<th>Specific mass, kg/kw (lb/kw)</th>
<th>Overall efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP-2</td>
<td>3</td>
<td>668 (1470)</td>
<td>223 (490)</td>
<td>5.4</td>
</tr>
<tr>
<td>SNAP-4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SNAP-6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SNAP-8</td>
<td>35</td>
<td>4460 (9800)</td>
<td>127 (270)</td>
<td>7.8</td>
</tr>
<tr>
<td>SNAP-10</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SNAP-10A</td>
<td>0.5</td>
<td>427 (960)</td>
<td>908 (2000)</td>
<td>1.6</td>
</tr>
<tr>
<td>Improved SNAPS-2-8-10 Technology</td>
<td>0.5–150</td>
<td>—</td>
<td>At 0.5 kw, 680 (1500)</td>
<td>9 (with CRU*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At 150 kw, 91 (200)</td>
<td>3 (with thermoelectric)</td>
</tr>
<tr>
<td>SNAP-50</td>
<td>100–1000</td>
<td>At 500 kw, 2700 (6000)</td>
<td>At 300 kw, 9 (20)</td>
<td>15</td>
</tr>
<tr>
<td>Thermonics and advanced concepts</td>
<td>100–1000</td>
<td>4.5 (10)</td>
<td>Various</td>
<td></td>
</tr>
</tbody>
</table>

*Combined Rotating Unit.

Impact of the nonradioactive reactor on one of the scattered, unpopulous islands along the range is unlikely, but, if it did occur, the reactor would just break up like any other piece of equipment. Since the reactor would not have been operated, the unused uranium fuel would not be dangerous.

Suppose, though, that the launch vehicle fails just short of orbital velocity and plunges back into the earth’s atmosphere at speeds up to 8000 meters/sec (nearly 5 miles/sec). The friction between the unprotected reactor and the atmosphere would generate enough heat to burn up some or all of the reactor with its still-inert uranium fuel. There would be no nuclear hazard in this case.

Only after the spacecraft is confirmed in orbit will the order be given to rotate the neutron reflectors by remote (radio) control to start a chain reaction in the reactor. In other words, only in orbit would a SNAP reactor be operating.

As a nuclear core generates heat during its normal operating lifetime, the concentration of unstable, radioactive fission products keeps increasing. These fission products are safe enough in a long-lived orbit, but engineers cannot overlook the remote chance that a satellite, bearing a cargo of radioactivity, might reenter the atmosphere earlier than expected. Using mathematical analysis and experimental tests with simulated reactors reentering high above the Atlantic Ocean, engineers have learned how to promote burnup by ablation during reentry. Ablation would disperse the accumulated fission products harmlessly above 100,000 feet. Any radioactivity reaching the ground weeks, months, and even years later would be diluted to safe concentrations by high-altitude winds and would also be much weaker because of radioactive decay in the intervening time.
Nuclear safety in space operations is ensured first by an exhaustive search for things that might go wrong. Then the consequences of the accident are computed or determined by actual test. Finally, if the consequences warrant, the power-plant design is altered, or countermeasures are taken to reduce the danger to negligible proportions.

IMPROVING THE BREED

In many areas of technology, a machine is obsolete by the time it is finally put in use. Improvements follow close on the heels of the development of any piece of equipment, whether it is an airplane or a SNAP reactor power plant. Some SNAP improvements are described in the following section.

Boiling Liquid Metals

In the systems that were used in the SNAP-2 and SNAP-50 programs, and still are the basis for SNAP-8, the hot vapor driving the turbine is created in a heat exchanger that takes its heat from the nonboiling primary coolant. Why not completely eliminate the heat exchanger and boil the

![Figure 24](image)

Figure 24 Schematic diagram of a power plant in which the liquid metal boils directly in the core. The intermediate heat exchanger and primary coolant pump of SNAP-2 and SNAP-8 are thereby eliminated.
CHRONOLOGY OF SPACE AND NUCLEAR TECHNOLOGY

SPACE

Edward Hale proposes a navigational satellite.

Konstantin Ziolkovsky publishes *Exploration of Space with Reactive Equipment*.

Robert Goddard publishes *A Method of Reaching Extreme Altitudes*.

V-2 rocket developed by Wernher von Braun and associates.

Project Feedback studies reconnaissance satellites.

Project Vanguard started.

Sputnik I orbited.

Apollo lunar landing scheduled.

Extended lunar exploration, orbital laboratories.

Mars landing possible.

1870

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

NUCLEAR

Henri Becquerel discovers radioactivity.

Ernest Rutherford makes first controlled nuclear transmutation.

James Chadwick discovers the neutron.

Otto Hahn and F. Strassmann discover uranium fission.

Enrico Fermi builds first reactor.

First A-bomb exploded.

Project Feedback looks at nuclear space power plants.

SNAP program initiated by AEC.

Modified SNAP-3 orbited on Navy navigational satellite.

SNAP-10A flight test made.

SNAP for lunar exploration and large satellites.

Electrical propulsion.

Figure 3

Boiling Electrons

When SNAP-10A was discussed on page 16, thermoelectric power conversion was described as a relatively inefficient technique. Thermionic conversion of heat to electricity, however, promises to overcome this limitation and may therefore replace rotating machinery with direct conversion of energy at high power levels.

The concept of thermionic conversion is this: When an electrode made of a metal like tungsten or molybdenum is heated to a temperature that is high enough, electrons are "boiled off" its surface, just as electrons are thermionically liquid metal within the reactor core? Many terrestrial power plants, like the one at Dresden, near Chicago, boil the coolant (water) right in the reactor as it circulates among the fuel elements. Boiling-potassium reactors have, in fact, been investigated for space use at the AEC's Oak Ridge National Laboratory. Additionally, the AEC's Lawrence Radiation Laboratory is now investigating high-temperature liquid metal-cooled reactor systems, based on the SNAP-50 concepts, for much higher power, in the multi-megawatt range.

There is, however, a problem of temperature. In SNAP-2 and SNAP-8, mercury is the secondary, or working, fluid. The use of mercury, which has a boiling point of 357°C (675°F), permits the reactor to operate at temperatures within the reach of existing technology. The trouble with trying to boil mercury in a reactor stems from its neutron-absorbing properties. Mercury is a reactor "poison" that bankrupts the neutron economy. For advanced power plants, potassium, which has considerably less affinity for neutrons and which has a boiling point of 760°C (1400°F), has been chosen instead. The increase of 403°C (725°F) in the boiling point of potassium over that of mercury means that increased temperatures will be produced in the fuel, turbines, and piping (where it might cause problems) and in the radiator (where it will be an advantage). Gradually the development of better materials will make boiling-potassium power plants a possibility and will provide, it is hoped, lighter, more effective power producers in space.
emitted from radio-tube cathodes or electric-bulb filaments. The “hot” electrons are then collected or “condensed” on a cooler collector electrode nearby. A voltage is thus established across the two electrodes, and, of course, the flow of electrons between them constitutes an electrical current. Heat energy is thus converted into electricity. Not all the heat is transformed; most of it is conducted or radiated (as heat) across the narrow gap between the electrodes. This waste heat has to be removed and radiated into empty space, as might be expected.

In principle, the simplest way to make a nuclear thermionic power plant would be to wrap the thermionic-converter emitter right around the reactor fuel element and remove the waste heat with a liquid metal that cools the collector. There are several technical problems encountered with this “in-core” approach:

1. It is difficult to get electrical power out of a core filled with hundreds of interconnected thermionic con-

of obtaining satellite power from fissioning uranium and from radioactive isotopes.

The relatively high power requirements—a few kilowatts (as much as the output of a small outboard motor)—for some proposed satellites led the U. S. Atomic Energy Commission (AEC) in 1951 to request a series of nuclear-power-plant studies from industry. These studies, completed in 1952, concluded that both fission and radioisotope power plants were technically feasible for use on satellites. At that time there were no rockets capable of launching a satellite, although the first intercontinental ballistic missiles were being developed. But the need for nuclear power in space had been recognized. Theoretical studies continued even though there was not yet any program of space exploration.

Start of the U. S. Space Effort

The official U. S. scientific space effort began in 1955 when President Eisenhower announced the Vanguard satellite program for the International Geophysical Year. The Vanguard satellites weighed but a few pounds and were powered by solar cells. Plans also were moving ahead for much larger satellites, however. Mainly to meet the needs of these devices, the AEC began the SNAP (Systems for Nuclear Auxiliary Power) program in 1955. The Martin Company was chosen to design SNAP-1, which would use the heat from the decaying radioisotope cerium-144 to generate 500 watts of electrical power. Simultaneously, Atomics International Division, North American Aviation, Inc., began the design of SNAP-2, a reactor-heated electrical power plant to produce 3 kw (kilowatts).*

Soon afterward, development of SNAP-8 was begun as a joint activity of the Atomic Energy Commission and the National Aeronautics and Space Administration. The SNAP-10, a 300-watt “fission battery”, was designed to include a conduction-cooled reactor with thermoelectric elements

*All odd-numbered SNAP power plants use radioisotopic fuel. Even-numbered SNAP power plants have nuclear fission reactors as a source of heat. For more information on the odd-numbered group, see the booklet Power from Radioisotopes in this series.
verters and bathed in electrically conducting liquid metal.

2. Thermal contractions and expansions and irradiation damage during reactor operation may cause the tiny gaps between electrodes (0.02 cm) to close and electrically short-circuit the converter.

3. Some of the best thermionic-emitter materials are neutron poisons, which reduce the reactor effectiveness.

4. Common to all thermionic reactor power plants is the extremely high temperature needed to boil electrons off the emitter surface — 1700 °C (3092 °F) and up. This temperature requires the use of structural materials with stringent and hard-to-come-by specifications.

Problems like these are being studied daily at government and industrial laboratories. The solutions to them are important because the combination of high temperatures and the integration of reactor core and converters promises to make thermionic space power plants simpler and perhaps lighter than comparable turbogenerator power plants.

Another thermionic approach is to place the thermionic converters in a separate heat exchanger or in the radiator itself. Problems 1 and 3 are reduced or eliminated by the idea. Reflection shows, however, that problem 4 is accentuated because the liquid-metal stream must now operate at the very high emitter temperatures rather than at the much lower collector temperatures. It is premature to make a final judgment of this method, because so much depends on the solution of practical problems and the attainment of high reliability.

Brayton Versus Rankine

Early in their studies of the various kinds of space power plants, engineers compared the now-dominant Rankine cycle with the Brayton, or gas-turbine, cycle,* which is used in

*The two cycles were named after the Scottish engineer, William J. M. Rankine, who also introduced the Rankine temperature scale, and George Brayton, a Philadelphia engineer, who suggested a gas-cycle engine in 1873. The Brayton cycle is also called Joule’s cycle in Europe.
jet engines. The Rankine cycle, which is used in SNAP-8 (and in all steam engines), involves the alternate boiling and condensing of a two-phase fluid like water or mercury. The Brayton cycle, on the other hand, employs a one-phase (gaseous) fluid like neon or argon to drive the turbines. The diagram for this power plant (Figure 26) shows its conceptual simplicity: Heat the gas in a reactor, expand it through a turbine, cool it in a radiator, compress it, and send it back to the reactor. There is no change of phase from liquid to vapor and back again. There is also the well-developed jet-engine technology to draw upon. Furthermore, the use of an inert gas virtually eliminates the corrosion problem. But—there always is a “but”—two objections arise from a theory and a third from practical considerations:

1. A most important difficulty is the fact that turbine exhaust gases may be easy to cool with the radiator while they are still hot, but, as they progress through the radiator tubes and drop in temperature, there is a spacecraft swings outward toward Mars. Mars is about 1.5 times as far from the sun as the earth is, so the solar-energy density is reduced by a factor equal to the square of 1.5 ($\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$), or 2.25. Huge arrays of mirrors or solar cells would therefore be needed to capture enough solar energy for a spacecraft operating near Mars.

In a situation where large amounts of power are needed over long periods of time, the best source of electricity is a nuclear reactor, which uses energy contained in fissionable uranium. Uranium-235 (^{235}U) contains 100,000 times as much energy per unit mass as the best chemical fuels.

This booklet describes the principles of nuclear-reactor space power plants and shows how they will contribute to the exploration and use of space. It compares them with chemical fuels, solar cells, and systems using energy from radioisotopes.

PUTTING THE ATOM IN ORBIT

It All Started with Feedback

When the chaos of World War II subsided, it was apparent that two important technical developments had occurred. The Germans had developed a large rocket, the V-2. This accomplishment was to fulfill prophecies made years before by the American rocket experimenter, Robert Goddard, the German space pioneer, Hermann Oberth, and the farsighted Russian, Konstantin Ziolkovsky. The second development, the atomic bomb, introduced a new, extremely compact form of energy that might be used to propel spacecraft, operate equipment, and sustain men on board.

In the late 1940s many scientists and engineers mused about the possibilities of combining the rocket and the atom. Space travel, however, was still a dream, and, besides, nuclear power had not been harnessed even for terrestrial use. Other matters dominated the national interest. An exception to this situation, however, was found in Project Feedback, a cold-war study of military reconnaissance satellites, sponsored by the U.S. Air Force and carried out by the Rand Corporation at Santa Monica, California. During Project Feedback the first serious studies were made...
problem that is explained by the Stefan-Boltzmann Law. In the gas, or Brayton, cycle, a large fraction of the heat has to be dissipated at relatively low temperatures; and this requires large and heavy radiators. In contrast, the vapor in the liquid-metal Rankine cycle is condensed at a relatively high, constant temperature; thus a smaller, lighter radiator can be used. (The temperature of a substance remains constant during a change in phase.)

2. A lot of power is needed to compress the low-pressure gas exiting from the radiator back to the pressure level needed at the reactor. The Rankine-cycle liquid-metal pump requires negligible power in comparison.

3. Gas bearings, where a film of gas supports the rotating shaft, are not well developed.

The conclusion from the early studies was that Brayton-cycle space power plants would have to be considerably heavier than Rankine-cycle plants. Recently there has been a strong upsurge of interest in the gas cycle because of its inherent simplicity and its success in aircraft engines. Inert gas systems can also achieve higher temperatures than corrosive liquid metals, and higher temperatures help to overcome the radiator weight problem by raising temperatures throughout the power plant. A reactor for such a Brayton cycle power plant is being investigated under the AEC's "710" Reactor Project.

Other Ideas

Several activities now under way aim at improving the present line of SNAP power plants, rather than seeking the more difficult goal of developing a whole new series of advanced power plants that will use relatively untried techniques.

One such effort involves the development of more effective hydrogen-diffusion barriers to place around the uranium-zirconium-hydride fuel elements used in SNAP-2, SNAP-8, and SNAP-10A. Hydrogen, being a small, chemically active atom, easily seeps through hot metal walls and escapes from the SNAP fuel elements. As hydrogen escapes over a period of time, the reactor neutron economy gets
worse because moderating power is lessened. Power-plant lifetime is limited because of this loss of hydrogen moderator.

A second plan attempts to interpose a thermoelectric heat exchanger between a SNAP-10A type reactor and the radiator. The thermoelectric elements are placed within this heat exchanger instead of in the radiator, as in SNAP-10A. A second, nonradioactive coolant carries the waste heat from the heat exchanger to the radiator. The additional weight of the heat exchanger should be more than offset by the reduction in shield weight made possible by the elimination of radioactive NaK from the radiator.

No one can now predict just what kind of nuclear power plant will be used on the first lunar base or on the first manned trip to Mars. But there is little doubt that the key to manned exploration of the solar system is the successful utilization of the energy locked within the uranium nucleus.

Some day, perhaps 15 years hence, a rocket will thrust a manned spacecraft from its parking orbit around the earth and inject it into an elliptical transfer orbit intended to intercept the planet Mars 7 months later. The men in this interplanetary craft will require electrical power for several purposes, for, according to an old rule of thumb, a man can live for only 40 days without food, 4 days without water, and 4 minutes without air. Enough food can and will be carried along on that first Mars journey, but there will not be room enough in the adventurous craft for all the water and air that will be required, unless it is possible for small amounts of these vital fluids to be used over and over again. The purification and regeneration of water and air will require electricity. So will the craft’s instruments and radios. Still more power will be needed to keep the cabin at a livable temperature.

For some long space voyages requiring large power supplies, chemical forms of energy—rocket fuels, battery fluids, and hydrogen—do not have enough energy per unit mass (joules per kilogram or kilowatt-hours per pound); they weigh too much for long-life space missions (although they are best for missions involving less power or shorter duration). Similarly, solar power has limitations for some missions. The sun’s contribution of energy, which is 1400 watts of power per square meter, or 150 watts per square foot, on the earth’s surface, will steadily decrease as the

SNAP NUCLEAR SPACE REACTORS

By WILLIAM R. CORLISS
THE COVER

The cover is an artist's conception of the SNAP-10A space power system, which was launched on April 3, 1965. This was the world's first operation of a nuclear reactor in space. The reactor is the assembly at the right end of the space vehicle.

THE AUTHOR

William R. Corliss is an atomic energy consultant and writer with 12 years of industrial experience including service as Director of Advanced Programs for the Martin Company's Nuclear Division. Prior industrial connections were with the Flight Propulsion Laboratory of the General Electric Company and with Pratt & Whitney Aircraft Company. Mr. Corliss has B.S. and M.S. degrees in Physics from Rensselaer Polytechnic Institute and the University of Colorado, respectively. He has taught at those two institutions and at the University of Wisconsin. He is the author of Propulsion Systems for Space Flight (McGraw-Hill 1960), Space Probes and Planetary Exploration (Van Nostrand 1965), and co-author of Radioisotope Power Generation (Prentice-Hall 1964), as well as numerous articles and papers for technical journals and conferences. In this series he has written Neutron Activation Analysis, Power Reactors in Small Packages, Direct Conversion of Energy, Computers, and was co-author of Power from Radioisotopes.

SUGGESTED REFERENCES

Books

POPULAR LEVEL

TECHNICAL LEVEL

Articles

Reports

Motion Pictures

Available for loan without charge from the AEC Headquarters Film Library, Division of Public Information, U. S. Atomic Energy Commission, Washington, D. C. 20545, and from other AEC film libraries.
Nuclear Power for Space—SNAP-9A, 12 minutes, sound, color, 1963. Produced by the Martin Company. Explains the principles of power generation by isotopic decay, compares the isotopes plutonium-238 and curium-242, which are used in SNAP power systems, and discusses the design and safety features of the SNAP-9A.

SNAP NUCLEAR SPACE REACTORS

Contents

3 PUTTING THE ATOM IN ORBIT
3 It All Started with Feedback
5 Start of the U. S. Space Effort
7 SNAP in Space
10 What Makes a Good Space Power Plant?
11 A Look at the Competition
15 What Does “Ambitious” Mean?
16 HOW A REACTOR SPACE POWER PLANT WORKS
16 Fitting the Pieces Together
17 Megawatts from a Wastebasket
24 Conversion of Heat to Electricity
29 Getting Rid of Waste Heat
33 Shielding Men and Equipment
35 Nuclear Safety
38 IMPROVING THE BREED
38 Boiling Liquid Metals
39 Boiling Electrons
41 Brayton Versus Rankine
43 Other Ideas
45 SUGGESTED REFERENCES

Library of Congress Catalog Card Number 66-62772
Nuclear energy is playing a vital role in the life of every man, woman, and child in the United States today. In the years ahead it will affect increasingly all the peoples of the earth.

It is essential that all Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them.

The United States Atomic Energy Commission provides this booklet to help you achieve such understanding.

Edward J. Brunenkant
Director
Division of Technical Information

This booklet is one of the "Understanding the Atom" Series. Comments are invited on this booklet and others in the series; please send them to the Division of Technical Information, U. S. Atomic Energy Commission, Washington, D. C. 20545.

Published as part of the AEC's educational assistance program, the series includes these titles:

Accelerators
Animals in Atomic Research
Atomic Fuel
Atomic Power Safety
Atoms at the Science Fair
Atoms in Agriculture
Atoms, Nature, and Man
Careers in Atomic Energy
Computers
Controlled Nuclear Fusion
Cryogenics, The Uncommon Cold
Direct Conversion of Energy
Fission From Nuclear Tests
Fossil Preservation by Irradiation
Genetic Effects of Radiation
Index to the UAS Series
Lasers
Microstructure of Matter
Neutron Activation Analysis
Nondestructive Testing
Nuclear Clocks
Nuclear Energy for Desalting
Nuclear Power and Merchant Shipping
Nuclear Power Plants
Nuclear Propulsion for Space
Nuclear Reactors
Nuclear Terms, A Brief Glossary
Our Atomic World
Plutonium
Power from Radioisotopes
Power Reactors in Small Packages
Radioactive Wastes
Radioisotopes and Life Processes
Radioisotopes in Industry
Radioisotopes in Medicine
Rare Earths
Reading Resources in Atomic Energy
Research Reactors
SNAP, Nuclear Space Reactors
Sources of Nuclear Fuel
Space Radiation
Synthetic Transuranium Elements
The Atom and the Ocean
The Chemistry of the Noble Gases
The First Reactor
Whole Body Counters
Your Body and Radiation

A single copy of any one booklet, or of no more than three different booklets, may be obtained free by writing to:

USAEC, P. O. BOX 62, OAK RIDGE, TENNESSE 37830

Complete sets of the series are available to school and public librarians, and to teachers who can make them available for reference or for use by groups. Requests should be made on school or library letterheads and indicate the proposed use.

Students and teachers who need other material on specific aspects of nuclear science, or references to other reading material, may also write to the Oak Ridge address. Requests should state the topic of interest exactly, and the use intended.

In all requests, include "Zip Code" in return address.